1、体积和表面积 三角形的面积=底×高÷2。
2、 公式 S= a×h÷2 正方形的面积=边长×边长 公式 S= a2 长方形的面积=长×宽 公式 S= a×b 平行四边形的面积=底×高 公式 S= a×h 梯形的面积=(上底+下底)×高÷2 公式 S=(a+b)h÷2 内角和:三角形的内角和=180度。
3、 长方体的表面积=(长×宽+长×高+宽×高 ) ×2 公式:S=(a×b+a×c+b×c)×2 正方体的表面积=棱长×棱长×6 公式: S=6a2 长方体的体积=长×宽×高 公式:V = abh 长方体(或正方体)的体积=底面积×高 公式:V = abh 正方体的体积=棱长×棱长×棱长 公式:V = a3 圆的周长=直径×π 公式:L=πd=2πr 圆的面积=半径×半径×π 公式:S=πr2 圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。
(资料图)
4、公式:S=ch=πdh=2πrh 圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。
5、 公式:S=ch+2s=ch+2πr2 圆柱的体积:圆柱的体积等于底面积乘高。
6、公式:V=Sh 圆锥的体积=1/3底面×积高。
7、公式:V=1/3Sh 算术 加法交换律:两数相加交换加数的位置,和不变。
8、 2、加法结合律:a + b = b + a 3、乘法交换律:a × b = b × a 4、乘法结合律:a × b × c = a ×(b × c) 5、乘法分配律:a × b + a × c = a × b + c 6、除法的性质:a ÷ b ÷ c = a ÷(b × c) 7、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。
9、 O除以任何不是O的数都得O。
10、 简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。
11、 8、有余数的除法: 被除数=商×除数+余数 方程、代数与等式 等式:等号左边的数值与等号右边的数值相等的式子叫做等式。
12、 等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。
13、 方程式:含有未知数的等式叫方程式。
14、 一元一次方程式:含有一个未知数,并且未知数的次 数是一次的等式叫做一元一次方程式。
15、学会一元一次方程式的例法及计算。
16、即例出代有χ的算式并计算。
17、 代数: 代数就是用字母代替数。
18、 代数式:用字母表示的式子叫做代数式。
19、如:3x =ab+c 分数 分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。
20、 分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。
21、异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
22、 分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。
23、异分母的分数相加减,先通分,然后再加减。
24、 分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
25、 分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。
26、 分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。
27、异分母的分数相加减,先通分,然后再加减。
28、 倒数的概念:1.如果两个数乘积是1,我们称一个是另一个的倒数。
29、这两个数互为倒数。
30、1的倒数是1,0没有倒数。
31、 分数除以整数(0除外),等于分数乘以这个整数的倒数。
32、 分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小 分数的除法则:除以一个数(0除外),等于乘这个数的倒数。
33、 真分数:分子比分母小的分数叫做真分数。
34、 假分数:分子比分母大或者分子和分母相等的分数叫做假分数。
35、假分数大于或等于1。
36、 带分数:把假分数写成整数和真分数的形式,叫做带分数。
37、 分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。
38、 数量关系计算公式 单价×数量=总价 2、单产量×数量=总产量 速度×时间=路程 4、工效×时间=工作总量 加数+加数=和 一个加数=和+另一个加数 被减数-减数=差 减数=被减数-差 被减数=减数+差 因数×因数=积 一个因数=积÷另一个因数 被除数÷除数=商 除数=被除数÷商 被除数=商×除数 长度单位: 1公里=1千米 1千米=1000米 1米=10分米 1分米=10厘米 1厘米=10毫米 面积单位: 1平方千米=100公顷 1公顷=10000平方米 1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米 1亩=666.666平方米。
39、 体积单位 1立方米=1000立方分米 1立方分米=1000立方厘米 1立方厘米=1000立方毫米 1升=1立方分米=1000毫升 1毫升=1立方厘米 重量单位 1吨=1000千克 1千克= 1000克= 1公斤= 1市斤 比 什么叫比:两个数相除就叫做两个数的比。
40、如:2÷5或3:6或1/3 比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。
41、 什么叫比例:表示两个比相等的式子叫做比例。
42、如3:6=9:18 比例的基本性质:在比例里,两外项之积等于两内项之积。
43、 解比例:求比例中的未知项,叫做解比例。
44、如3:χ=9:18 正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。
45、如:y/x=k( k一定)或kx=y 反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。
46、 如:x×y = k( k一定)或k / x = y 百分数 百分数:表示一个数是另一个数的百分之几的数,叫做百分数。
47、百分数也叫做百分率或百分比。
48、 把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号。
49、其实,把小数化成百分数,只要把这个小数乘以100%就行了。
50、把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。
51、 把分数化成百分数,通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。
52、其实,把分数化成百分数,要先把分数化成小数后,再乘以100%就行了。
53、 把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。
54、 要学会把小数化成分数和把分数化成小数的化发。
55、 倍数与约数 最大公约数:几个数公有的约数,叫做这几个数的公约数。
56、公因数有有限个。
57、其中最大的一个叫做这几个数的最大公约数。
58、 最小公倍数:几个数公有的倍数,叫做这几个数的公倍数。
59、公倍数有无限个。
60、其中最小的一个叫做这几个数的最小公倍数。
61、 互质数: 公约数只有1的两个数,叫做互质数。
62、相临的两个数一定互质。
63、两个连续奇数一定互质。
64、1和任何数互质。
65、 通分:把异分母分数的分别化成和原来分数相等的同分母的分数,叫做通分。
66、(通分用最小公倍数) 约分:把一个分数的分子、分母同时除以公约数,分数值不变,这个过程叫约分。
67、 最简分数:分子、分母是互质数的分数,叫做最简分数。
68、分数计算到最后,得数必须化成最简分数。
69、 质数(素数):一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数)。
70、 合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。
71、1不是质数,也不是合数。
72、 质因数:如果一个质数是某个数的因数,那么这个质数就是这个数的质因数。
73、 分解质因数:把一个合数用质因数相成的方式表示出来叫做分解质因数。
74、 倍数特征: 2的倍数的特征:各位是0,2,4,6,8。
75、 3(或9)的倍数的特征:各个数位上的数之和是3(或9)的倍数。
76、 5的倍数的特征:各位是0,5。
77、 4(或25)的倍数的特征:末2位是4(或25)的倍数。
78、 8(或125)的倍数的特征:末3位是8(或125)的倍数。
79、 7(11或13)的倍数的特征:末3位与其余各位之差(大-小)是7(11或13)的倍数。
80、 17(或59)的倍数的特征:末3位与其余各位3倍之差(大-小)是17(或59)的倍数。
81、 19(或53)的倍数的特征:末3位与其余各位7倍之差(大-小)是19(或53)的倍数。
82、 23(或29)的倍数的特征:末4位与其余各位5倍之差(大-小)是23(或29)的倍数。
83、 倍数关系的两个数,最大公约数为较小数,最小公倍数为较大数。
84、 互质关系的两个数,最大公约数为1,最小公倍数为乘积。
85、 两个数分别除以他们的最大公约数,所得商互质。
86、 两个数的与最小公倍数的乘积等于这两个数的乘积。
87、 两个数的公约数一定是这两个数最大公约数的约数。
88、 1既不是质数也不是合数。
89、 用6去除大于3的质数,结果一定是1或5。
90、 奇数与偶数 偶数:个位是0,2,4,6,8的数。
91、 奇数:个位不是0,2,4,6,8的数。
92、 偶数±偶数=偶数 奇数±奇数=奇数 奇数±偶数=奇数 偶数个偶数相加是偶数,奇数个奇数相加是奇数。
93、 偶数×偶数=偶数 奇数×奇数=奇数 奇数×偶数=偶数 相临两个自然数之和为奇数,相临自然数之积为偶数。
94、 如果乘式中有一个数为偶数,那么乘积一定是偶数。
95、 奇数≠偶数 整除 如果c|a, c|b,那么c|(a±b) 如果,那么b|a, c|a 如果b|a, c|a,且(b,c)=1, 那么bc|a 如果c|b, b|a, 那么c|a 小数 自然数:用来表示物体个数的整数,叫做自然数。
96、0也是自然数。
97、 纯小数:个位是0的小数。
98、 带小数:各位大于0的小数。
99、 循环小数:一个小数,从小数部分的某一位起,一个数字或几个数字依次不断的重复出现,这样的小数叫做循环小数。
100、如3. 141414 不循环小数:一个小数,从小数部分起,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做不循环小数。
101、如3. 141592654 无限循环小数:一个小数,从小数部分到无限位数,一个数字或几个数字依次不断的重复出现,这样的小数叫做无限循环小数。
102、如3. 141414…… 无限不循环小数:一个小数,从小数部分起到无限位数,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做无限不循环小数。
103、如3. 141592654…… 利润 利息=本金×利率×时间(时间一般以年或月为单位,应与利率的单位相对应) 利率:利息与本金的比值叫做利率。
104、一年的利息与本金的比值叫做年利率。
105、一月的利息与本金的比值叫做月利率。
相信通过小升初数学复习重点这篇文章能帮到你,在和好朋友分享的时候,也欢迎感兴趣小伙伴们一起来探讨。
本文由用户上传,如有侵权请联系删除!